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ABSTRACT

Objective: To introduce a disease prognosis framework enabled by a robust classification scheme derived from

patient-specific transcriptomic response to stimulation.

Materials and Methods: Within an illustrative case study to predict asthma exacerbation, we designed a stimu-

lation assay that reveals individualized transcriptomic response to human rhinovirus. Gene expression from

peripheral blood mononuclear cells was quantified from 23 pediatric asthmatic patients and stimulated in vitro

with human rhinovirus. Responses were obtained via the single-subject gene set testing methodology “N-of-1-

pathways.” The classifier was trained on a related independent training dataset (n¼19). Novel visualizations of

personal transcriptomic responses are provided.

Results: Of the 23 pediatric asthmatic patients, 12 experienced recurrent exacerbations. Our classifier, using individ-

ualized responses and trained on an independent dataset, obtained 74% accuracy (area under the receiver operating

curve of 71%; 2-sided P¼ .039). Conventional classifiers using messenger RNA (mRNA) expression within the viral-

exposed samples were unsuccessful (all patients predicted to have recurrent exacerbations; accuracy of 52%).

Discussion: Prognosis based on single time point, static mRNA expression alone neglects the importance of dy-

namic genome-by-environment interplay in phenotypic presentation. Individualized transcriptomic response

quantified at the pathway (gene sets) level reveals interpretable signals related to clinical outcomes.

Conclusion: The proposed framework provides an innovative approach to precision medicine. We show that

quantifying personal pathway–level transcriptomic response to a disease-relevant environmental challenge pre-

dicts disease progression. This genome-by-environment interaction assay offers a noninvasive opportunity to

translate omics data to clinical practice by improving the ability to predict disease exacerbation and increasing

the potential to produce more effective treatment decisions.
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BACKGROUND AND SIGNIFICANCE

The advent of increasingly rapid and cost-effective genome-wide

measures (omics methods)1,2 is transforming our understanding of

human pathophysiology and has stimulated numerous initiatives in

precision medicine.3 In particular, our understanding of single-gene

disorders is advancing rapidly. However, genes alone do not deter-

mine the onset or progression of complex diseases – environmental

factors, including lifestyle and specific stimulus exposure, also con-

tribute substantially.4 Already, a number of stimulation-based bioas-

says have been developed for diagnosis and treatment in clinical

medicine. These include in vivo bronchial challenge tests (eg, inhaled

methacholine challenge for asthma) and in vitro antibiotic-

sensitivity bacteriograms, though available tests rely on available

pathognomonic (diagnostic) biomarkers and have not yet leveraged

the power of big-data genomics. Tissue-stimulation assays coupled

with omics measurements provide a minimally invasive opportunity

to understand an individual’s personal genome-by-environment re-

sponse to a stimulus relevant to disease state or risk of progression.

While cohort statistics can identify the most common stimulus-

provoked molecular responses between clinical populations,5 there

are no unbiased tools for assessing a whole transcriptome response

that can be scaled down to a single patient without requiring infer-

ence from reference sets based on well-powered, cross-patient com-

parisons. Tailoring patient treatment according to the results of a

given in vivo or in vitro stimulation thus remains an unmet chal-

lenge.6 Nonetheless, diseases with complex inheritance that are pre-

cipitated by acute environmental challenge are conspicuous

candidates for assay development to provide clinical insight into

using this strategy. Focusing on dynamic gene expression changes

within a subject additionally gets to the heart of the matter more ef-

fectively than conventional static classifiers derived from

population-averaged expression.

We have used an approach that assesses changes to transcript ex-

pression between 2 paired samples from a single subject in response

to stimulus exposure. This is followed by analyses of biological pro-

cess involvement through gene set enrichment. Expression changes

are determined using a suite of single subject–oriented N-of-1-path-

ways analytical tools uniquely designed for paired data analysis

without use of a reference set.7–11 In the accompanying experimental

assay focused on asthma, live peripheral blood mononuclear cells

(PBMCs) were drawn from patients, aliquoted, and exposed in vitro

to either human rhinovirus (HRV) stimulus (stimulated) or vehicle

control (unstimulated). We have called the provoked transcriptional

response a viral regulome specific to a personal genome, or a

“virogram.”9

Epidemiological studies have identified viral infection as the

most prominent environmental risk factor for severe asthma exacer-

bation episodes at all ages, with HRV infection (aka the

common cold) specifically contributing to 48%–65% of pediatric

cases.12–16,17 These severe asthmatic exacerbations are a major

cause of morbidity, require acute hospitalizations, and in rare cases

can lead to death.12 Though the role of viral infection is well estab-

lished, not all children with respiratory infections become asthmatic

or experience significant exacerbations later in life. This supports an

additional significant role for non-Mendelian genetic predisposition

interacting with viral exposure.18 Identifying individuals at

significantly increased risk for exacerbation before a clinically severe

episode occurs would provide benefit at the individual case manage-

ment and larger population health levels.19

We hypothesize that clinically useful pathway classifiers can be

derived from dissecting the interaction of an individual patient’s ag-

gregate genomic risk with relevant environmental or laboratory

assay exposure (genome� environment classifier; G�E classifier).

In this study, we designed a robust dynamic transcriptional signa-

ture that can identify asthmatic patients at risk of exacerbation with

a single blood test.

MATERIALS AND METHODS

The framework of our study is shown in Figure 1. We used a pub-

lished microarray dataset measuring mRNA expression from an

in vivo HRV exposure study20 in non-asthmatic volunteers (training

set; see Table 1). These data were used to build classifiers based on

differentiating responses associated with symptomatic and asymp-

tomatic infection. The G�E single-subject classifier built from our

analysis of individualized within-subject responses was compared to

cohort-based classifiers constructed using more standard methods.

In our validation set (see Table 1),9 PBMCs were isolated from asth-

matic patients and stimulated in vitro with the same virus to pro-

voke transcriptional changes. RNA was harvested and transcript

expression quantified by microarray from paired unstimulated and

stimulated cells. Single subject–derived and cohort-derived viral re-

sponse classifiers were then explored for their ability to predict ex-

acerbation episodes in the asthmatic validation set.

Gene set analysis for classifier construction was performed using

Gene Ontology (GO)21 Biological Process annotations.22,23 To pro-

vide additional clinical translational value, we also introduced a

novel visualization tool using star plots to help physicians make

treatment decisions from the mechanism-anchored metrics revealed

for each patient.

Description of training set to derive responsive features

for development of an asthmatic exacerbation classifier
For our training set, we downloaded published microarray data

from the Gene Expression Omnibus (GEO; GSE17156)20 and

Table 1. These data were derived from PBMC samples collected

from 19 healthy, non-asthmatic volunteers exposed in vivo to HRV

via intranasal inoculation. Each volunteer donated 2 blood samples,

the first drawn at baseline prior to challenge, the second drawn 48 h

after viral exposure. Of these 19 volunteers, 10 individuals developed

symptoms of acute respiratory infection after exposure to HRV (symp-

tomatic), while the other 9 had no symptoms (asymptomatic). Note:

though the original study included 20 subjects, only 19 pairs of

matched mRNA expression datasets were deposited in GEO.

Asthmatic subjects accrued for validation set and

clinical phenotype determination
All human studies were carried out according to protocols approved

by the Institutional Review Boards of the University of Arizona and

the University of Wisconsin (IRB 0600000587 for the TREXA clin-

ical trial and IRB06035604 for the BADGER clinical trial). Twenty-

three pediatric asthma patients who previously participated in the

Journal of the American Medical Informatics Association, 2017, Vol. 24, No. 6 1117

Downloaded from https://academic.oup.com/jamia/article-abstract/24/6/1116/4004728
by UNIVERSITY OF ARIZONA user
on 15 November 2017



48h

HRV

RNA extraction
+ Microarray*

TRAINING SET ASSAY ANALYSIS

Individualized 
Responsive
Pathways

N-of-1-pathways
single-subject analysis  

PBMC at
baseline

Stimulated
PBMC

blood
sample

Stimulated PBMC 

+HRV
RNA extraction

PBMCs
vehicle control

+ Microarray

blood
sample

blood
sample

Fully Specified
Classifier by 
machine learning: 
symptomatic vs 
asymptomatic

Virogram prediction
vs. clinical prognosis 
of Asthma exacerbation

Applying
classifier

Individualized
Responsive
Pathways

VALIDATION

NA

N-of-1-pathways
single-subject analysis  

Classifier
development+

Exacerbated
Non-

Exacerbated

VALIDATION SET ASSAY  

B

A

Healthy
volunteers

Asthmatic
children

Healthy

Asthmatic

Common.
Lifestyle

Common
Genomic 
response
to rhinovirus Asymptomatic response to rhinovirus

in healthy subjects or non exacerbation
in asthmatic subjects

Symptomatic response to rhinovirus
 in healthy subjects or exacerbation 

in asthmatic subjects

Genetics 
Epigenetics

Environment

Congenital.

C
*Data obtained from Zaas et al. (2009)

Figure 1. Overview of the experimental and analytic design of the study. We hypothesize that a classifier based on the pathway-level transcriptional responses

that differ between symptomatic and asymptomatic responses to HRV infection in healthy patients can predict which asthmatic patients will have exacerbations

over a 1-year follow-up period, based on those patients’ transcriptomic responses to an in vitro HRV stimulation assay. Panel A illustrates the development of a

classifier using innovative features. Both shared and unique genetic and nongenetic variables influence transcript expression and healthy vs disease state within

an individual. Exposure to a relevant stimulus (here, HRV infection) reveals relevant pathway gene sets whose genome and environmentally informed responses

(G�E response pathways) can be used to predict individual prognosis. Panel B describes the development of classifier from the training set using data from

PBMCs of healthy volunteers exposed to HRV in vivo. For each patient, paired microarrays analyzing gene expression before and after HRV exposure were com-

pared using N-of-1-pathways analysis to identify significant Gene Ontology biological process (GO-BP) features describing each response. Responses in asymp-

tomatic patients were then compared to responses in symptomatic patients to develop the classifier. Panel C describes the laboratory stimulation assay of

asthmatic patients’ PBMCs in this study. As in the training set, paired microarrays for each patient were used to determine the response using N-of-1-pathways.

The classifier developed in panel B was then applied to individual responses and used to predict recurrent exacerbation.

Table 1. Descriptions of datasets

Dataset Training set Validation set

Purpose Learn classifier Predict outcome

Source Authors Zaas et al. Cell Host and Microbe 2009 Present study

Data Source GSE17156 (downloaded 9/17/2014) GSE68479

Platform Microarray Affy. Human Gene U133A 2.0 Affy. Human Gene 1.0ST33297

Probe 22277 33297

Protocol Inhaled HRV

PBMC samples drawn before

and 48 h after HRV inoculation

PBMCs isolated, then incubated in vitro with

HRV (stimulated) or vehicle (unstimulated)

Subjects Total 19 healthy adult volunteers 23 pediatric asthmatic patients

� 10 symptomatic for common cold � 12 recurrent exacerbations of asthma

(hospitalizations and/or emergency room visits)

� 9 asymptomatic � 11 no exacerbation of asthma

Samples Samples: 38 RNA microarrays 46 RNA microarrays

� 19 PBMC drawn prior to infection � 23 PBMC unstimulated

� 19 PBMC drawn after HRV inhalation � 23 PBMC HRV-stimulated in vitro

1118 Journal of the American Medical Informatics Association, 2017, Vol. 24, No. 6

Downloaded from https://academic.oup.com/jamia/article-abstract/24/6/1116/4004728
by UNIVERSITY OF ARIZONA user
on 15 November 2017



Treating Children to Prevent Exacerbations of Asthma (TREXA)24

and Best Add-on Therapy Giving Effective Responses (BADGER)25

clinical trials were asked to participate in a yearlong extension study

2 years after the clinical trials ended. Based on exacerbation status,

the pediatric asthma patients were classified in 2 groups during the

clinical trial: (1) 11 patients who did not receive oral corticosteroids

during the year of the extension study were coded as no exacerba-

tion, and (2) 12 patients who received 2 or more courses of oral cor-

ticosteroids during the year of the study were coded as RE. (For

more details on patient characteristics, see Supplementary Table S1.)

Importantly, none of the 23 asthma patients received steroids during

the month prior to the extension study when blood samples were

collected. We statistically tested for obvious confounding factors be-

tween the 2 phenotypes, such as age, gender, family history, etc.,

and found no evidence of group-specific demographic or clinical dif-

ferences (Supplementary Table S1).

PBMC sample extraction, HRV stimulation, and RNA

expression quantification in the in vitro study to

develop the validation set
PBMCs were isolated from blood samples collected from the 23

pediatric asthma patients enrolled in the extension study. Each indi-

vidual’s PBMCs were divided into 2 cultures, nonstimulated and

stimulated with human rhinovirus RV-16 provided by James E

Gern, University of Wisconsin-Madison. Specifically, 100ml of the

working stock RV-16 was added to 2 mL of PBMC suspension,

yielding a final concentration of 2.5�106 plaque-forming units/mL.

These samples were then incubated at 37�C and 5% CO2 for 24 h

(HRV-stimulated). In parallel, the second aliquot of patient PBMCs

was incubated under the same culture conditions, but exposed only

to vehicle (unstimulated). Following this, RNA was isolated from

each sample, quality was assessed, and then RNA was amplified,

tagged, and hybridized on Affymetrix Human Gene 1.0 ST microar-

rays according to standard operating procedures. Data were depos-

ited in GEO (GSE68479).

Processing of microarray datasets
Within both the training and validation sets, each pair of matched

samples (HRV-stimulated and unstimulated) was normalized using

Robust Multiple-array Average26 (2 paired samples at a time to

avoid bias in single-subject analyses) from Affymetrix Power

Tools.27 For the training set, each pair of samples derived from each

patient was obtained in a log2-normalized format and further cor-

rected for batch effects using ComBat.28 In all, 12 157 genes were

found in common across both datasets.

Pathway (gene set) annotations using gene ontology

biological processes
To obtain mechanistic profiles of responsive pathways for each pa-

tient, virus-responsive genes were aggregated into gene sets accord-

ing to GO annotations of biological processes (GO-BPs)21,29 using

the org.Hs.eg.db package30 (Homo sapiens) of Bioconductor,31

available for R statistical software.32 Hierarchical GO terms were

retrieved using the org.Hs.egGO2ALLEGS database (downloaded

on May 15, 2013), which contains a list of GO-BP terms along with

all of their child nodes. Gene sets comprising a minimum of 15 and

a maximum of 500 genes were included, as documented in our pre-

vious studies.7,10,22,23,33

Transcriptome and pathway (gene set) analysis of

gene-by-environment interactions using

N-of-1-pathways framework
To determine personally responsive gene set involvement for each

patient in each dataset (training and validation sets, Table 1), the N-

of-1-pathways Wilcoxon framework was applied using each

patient’s gene expression microarrays derived from paired samples

(HRV-stimulated and nonexposed control PBMCs). Briefly, N-of-1-

pathways is designed to create personal profiles of responsive path-

ways (gene sets) and is based on 3 principles: (1) the individual

patient is the sole source/unit of observation, and any statistical

descriptions and inferences are intended to relate only to that pa-

tient; (2) significance and interpretation are derived from gene sets;

and (3) gene set–level information is used to answer questions of

clinical importance. Principle 1 allows for detection of individual

signals that traditional cohort-level studies may overlook. Principle

2 anchors the results in mechanism, and this affords dimension re-

duction and interpretation. Principle 3 provides quantitative and

qualitative measures to address questions related to patient care.7

As described previously,7,9 each patient’s paired gene expression

was transformed via N-of-1-pathways Wilcoxon into pathway-level

metrics (annotated using GO-BP). Specifically, for each pathway

gene set, a Wilcoxon signed-rank test was conducted between the

gene expression measurements. This test produces a P-value that

quantifies whether the central gene expression is different between

the pair of samples (higher or lower expressed). In effect, observa-

tions from a patient in both datasets (training and validation) were

transformed from paired, whole-transcriptome measurements to a

simple list of pathway-associated P-values for each patient.

The P-values obtained from the training set were further manip-

ulated to serve as inputs for the classifier algorithms. The output of

N-of-1-pathways was transformed into a matrix of P-values repre-

senting all patients and pathways (23 patients by 3055 pathways).

This matrix was further transformed into a ternary matrix by con-

sidering a pathway gene set as responsive if its nominal P-value was

<5% and signed to indicate the direction of response. Specifically,

the ternary matrix contains the values �1 (significantly lower in

HRV-stimulated), 0 (not significant responsive), and 1 (significantly

higher).

Principal component analysis
The principal component analyses (PCAs) were computed using the

FactoMineR package34 in R (with default parameters) based on

the ternary matrix derived from the training set. A projection over

the first component was used to assess the statistical significance

of the separation shown by the PCA between 2 phenotypes (eg,

symptomatic vs asymptomatic). In particular, a Mann-Whitney U

test was used to assess the degree of separation of the 2 phenotypes.

Projections over the first and third principal components were used

to visualize the phenotypic separation.

Classifier modeling using gene-by-environment

response pathways as features
The N-of-1-pathways ternary matrix (pathways�patients) that per-

tains to the analysis of the training set was used for training the clas-

sifier through machine learning procedures with feature selection.

The training set was transformed into an .arff file using Weka

v.3.6.11,35 and then fed into Weka algorithms for further analysis.

Briefly, feature selection was performed on the training set (clinical

assay ternary matrix) using a chi-squared test. Using the training
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data alone, chi-squared test of association was performed using the

pathway-associated ternary values and the phenotype (symptomatic

vs asymptomatic). The pathways were then ranked in ascending

order of P-values. The pathway gene sets with the smallest P-values

from the chi-squared test were selected for further modeling based

on the best prediction performance by varying the number of fea-

tures in the classifiers listed below (assessed via leave-one-out cross-

validation; Supplementary Table S2). Five different classifier models

were assessed for performance on the training set using the default

parameters of Java software: random forest classifier, naı̈ve Bayes,

decision tree, support vector machine, and nearest neighbor. The

random forest classifier model was further assessed for superior per-

formance on the training set using receiver operating characteristic

(ROC) curve based on prediction scores extracted from Weka. The

area under the curve (AUC) and significance tests were computed

with the default parameters of the verification36 package in R. The

fully specified classifier derived from the training set was then

applied once on the validation set, and the accuracy of predictions

was measured from the ROC curve.37,38

Visualization of personal gene-by-environment inter-

action via pathways gene set responsive to stimulation

using star plots
Star plots were computed in R using the stars function in the default

graphics package. Each patient has an individual star plot, where

each spike represents the response of a specific pathway (GO-BP;

method: N-of-1-pathways framework). The spikes within each star

plot represents the 20 gene set features of the classifier described in

Table 4. Each individual star plot corresponds to a single validation

set individual’s N-of-1-pathways scores (n¼23 patients; Table 1).

An individual pathway is considered upregulated when the N-of-1-

pathways test computes a concordant increase in expression of the

genes within the pathway in the HRV-stimulated sample as com-

pared to the control. The median radius of the star plot corresponds

to no changes in the pathway, while upregulated pathways are

assigned values in the white range and downregulated pathways are

assigned values in the gray range. Direction-adjusted (signed) P-val-

ues were transformed into 4 states: (1) significantly upregulated

(reaching the border of the star plot), (2) significantly downregu-

lated (center of the star plot), (3) upregulated not reaching statistical

significance (midrange radius of the white zone of the star plot), and

(4) downregulated not reaching statistical significance (midrange ra-

dius of the gray zone of the star plot). For grouping of related path-

ways in the star plot, similarities between GO-BP terms were

determined using Jiang’s information theoretic similarity, which

ranges from 0 (no similarity) to 1 (perfect match).39

RESULTS

Generation of the predictive classifier for rhinovirus

stimulation response
As an exploratory analysis, we first computed the principal compo-

nents resulting from the transformed ternary representation of all N-

of-1-pathways scores from the training set (see Materials and Meth-

ods section; Principal Component Analysis). The idea was to investi-

gate whether these scores carry information to discriminate

asymptomatic from symptomatic individuals prior to fitting a com-

plex classifier. Indeed, the first component from the PCA based on

the single-subject dynamic change of gene expression within path-

ways gene set enabled a rough classification of the 2 clinical

phenotypes (asymptomatic vs symptomatic; Figure 2, right). More-

over, the bivariate relationship between the first and third compo-

nents reveals a striking pattern of phenotypic separation (Figure 2,

left). In light of these results, the single-subject scores of the 20 most

relevant pathway dynamic expressions produced by the chi-squared

test based on feature selection were used to train a classifier (Materi-

als and Methods section). The random forest classifier achieved the

best AUC of the ROC curve (86.7%) using leave-one-out cross-val-

idation of the training set (see Materials and Methods section; classi-

fier modeling; Supplementary Table S2).

Classifier derived from pathways responsive to

gene-by-environment interactions, under HRV

stimulation, enables asthmatic clustering and a clinical

risk assessment representation of asthma exacerbation

for each subject
We applied the random forest classifier to the dynamic expression

change of pathways stimulated in vitro on PBMC samples of the val-

idation set, which showed >70% accuracy in identifying children

with and without recurrent asthma exacerbations (Figure 3A). We

also tried 4 other classification methods to assess the robustness of

the signal regardless of the type of classifier (Table 2). An unsuper-

vised principal component analysis of these pathway scores also

showed a natural split between these 2 asthmatic phenotypes (Sup-

plementary Figure S1). To further explore the dynamic change in

Projection on
Dimension 1

−40 −20 0 20 40 60

−2
0

0
20

40

Dimension 1 

D
im

en
si

on
 3

 

�

�

Asymptomatic
Symptomatic

−2
0

0
20

40

*

�

�

�

��
�

�

�

�

�

�

�

�

�
�

�

� �

�

PCA conducted over G×E response pathways 

derived from each subject in the training set 

Figure 2. Metrics derived from responsive pathways discriminate asymp-

tomatic from symptomatic subjects in the training set of in vivo HRV-stimu-

lation data. In panel A, principal component analysis was conducted using

responsive gene sets derived from each subject in the training set (Figure 1B

and Materials and Methods section). The scatter plot on the left illustrates the

bivariate relationship of the first and third principal components for each

patient’s ternary-represented N-of-1-pathways scores derived from paired

samples of PBMCs collected at baseline and after HRV exposure. Each point

represents a subject in the training set through a linear combination of path-

way gene set–level scores that explain the maximal variation in the data (see

Materials and Methods section for details on the ternary representation and

PCA construction). The first and third principal components show 2 clusters

emerging that separate asymptomatic from symptomatic individuals. Thus,

N-of-1-pathways scores are associated with the phenotype of interest. On the

right, side-by-side box plots display the first principal component scores

among asymptomatic and symptomatic subjects, and this component alone

significantly dichotomizes the 2 phenotypes (Mann-Whitney U test,

P¼ .0069). Panel B lists the 20 Gene Ontology biological processes used as

features in our classifier, organized according to broad biological function

categories.
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predict exacerbation status. Panel A shows receiver operating curve (ROC) of the G�E classifier conducted in the validation set (overall accuracy, 74%; sensitiv-

ity, 75%; specificity, 73%). In panel B, the star plots illustrate the level of response to HRV stimulation for each pathway in that patient. The classifier is designed

using 20 pathways, with each radial line representing the score of a pathway. The area above and below the gray zone represents upregulation and downregula-

tion, respectively, of any given pathway (see Materials and Methods section for complete details). In panel C, each star plot represents a single subject, with label

appearing above (eg, Subject 16¼SUB16). The star plot is located in the quadrant of the contingency table that represents the performance of the G�E classifier

on predicting the clinical progression from a specific asthmatic patient’s data. This classifier prediction applied to the HRV-stimulation assay recapitulated the

clinical progression in 17 out of the 23 asthmatic patients; 6 were misclassified: 3 false positives (SUBM1, SUB09, SUB23) and 3 false negatives (SUB2, SUB23,

and SUBM2). One can straightforwardly identify that innate immunity (mauve) is upregulated in every asthmatic patient and does not contribute to the classifica-

tion in the validation set. On the other hand, observed upregulation in acquired immunity (orange) pathways could be used to correctly classify 19 subjects.
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expression within the validation set, we used a heatmap displaying

an unsupervised clustering of individuals to visualize transformed

N-of-1-pathways scores (Supplementary Figure S2). Further, to as-

sess whether the classifier was dependent on HRV stimulation or

due to a general transcriptomic viral response, we developed 2 add-

itional classifiers using (1) influenza A and (2) respiratory syncytial

virus infection data (GSE17156; Zaas et al.20) as our training sets.

We employed the same methodology as described to identify classi-

fier features and attempted to use these to classify our validation set

of HRV-stimulated PBMCs from asthmatic patients. The best classi-

fier for either alternative virus was ineffective with every validation

set patient-predicted as nonrecurrent, thus yielding no predictive

stratification (52% accuracy and 61% AUC for influenza; 48% ac-

curacy, 85% AUC for respiratory syncytial virus; see details in Sup-

plementary Table S3). Moreover, our pathway-level metrics of HRV

response outperformed prediction in the validation set compared to

conventional mRNA expression–derived classifiers (Supplementary

Table S4). Indeed, gene-level classifiers, built in a similar fashion

from the HRV-stimulated training set, achieved a best accuracy of

only 52% and AUC of 41% on the validation set. Again, this poor

AUC is explained by a lack of prediction stratification, as all

patients in the validation set were predicted to have REs.

We assessed the optimal number of pathway features to be

included in our random forest classifier using the chi-squared

method for feature selection. This showed robust performance by 20

to 30 features (Table 3). Guided by parsimony heuristics, we

selected 20 features.

Focusing on each patient’s PBMC response to HRV stimulation,

we developed a star plot representing personal profiles of these 20

pathways (Figure 3B) to report results as a visually interpretable risk

assessment of asthma exacerbation. Comparing clinical records of

individuals who experienced at least 2 exacerbations in a year to

their retrospective molecular assessment of asthma exacerbation, 6

of the 23 individuals were misclassified (SUBM1, SUB09, SUB13,

and SUB2, SUB23, and SUBM2; Figure 3C). Acquired immunity

(orange), morphogenesis (blue), response to stimulus (green), and

chromatin organization (yellow) responses were highly discrimin-

atory between true positives and true negatives, while all of the asth-

matic patients in the validation set showed substantial activation of

innate immunity (mauve). Thus, while innate immunity–associated

pathways are likely involved in common defense mechanisms to

HRV and symptomatic vs asymptomatic infection of healthy sub-

jects, it may be that asthmatic disease state alone predisposed all

patients in our validation set to high innate activation. This is per-

haps a limitation of our use of healthy patients in the training set,

though it does highlight that our classifier was fully specified on the

training set alone before being applied to the asthmatic patient data.

Nonetheless, despite limited additional discriminatory power

from innate immunity–associated pathways, chromatin organization

and acquired immunity clearly show a high propensity to be signifi-

cantly upregulated in children who experienced RE relative to those

who did not. As such, the star plot provides a visual tool for physi-

cians to observe responsive mechanisms common and distinct be-

tween phenotypes, as well as individualized profiles.

DISCUSSION

In this study, we demonstrated the effectiveness of classifiers built

using biological process pathways that are differentially responsive

to clinically relevant stimulation (G�E classifier). Specifically, our

case study uses HRV-stimulation response data from healthy

patients to classify and predict the risk of exacerbation in asthmatic

patients whose PBMCs were subjected to in vitro exposure of the

same virus. Although the classifier was trained on healthy volun-

teers, we were able to accurately classify 70% of asthmatic patients

as low risk (no exacerbation) or high risk (recurrent exacerbation)

by using the same pathway gene sets, despite small numbers of

patients in both the training and validation cohorts. A classifier

trained on patient-specific dynamic responses at the pathway level

Table 2. Performance of 5 different pathway response classifiers built on N-of-1-pathway scores in the training set (in vivo) and validated

without bias on N-of-1-pathway scores in the validation set (in vitro). The Random Forest (bold) classifier showed the highest scores and

was chosen for all other analyses.

Classifier #Features (GO-BP terms) Classification performance in the validation set

Accuracy Sensitivity Specificity Precision AUC TP FP FN TN

Random Forest 20 73.9 75 72.7 75 71.2 9 3 3 8

Naı̈ve Bayes 20 73.9 75 72.7 75 67.4 9 3 3 8

Decision Tree 20 65.2 75 54.5 64.3 64.8 9 5 3 6

Support Vector Machine 20 69.6 75 63.6 69.2 69.3 9 4 3 7

Nearest Neighbor 20 69.6 66.7 72.7 72.7 69.7 8 3 4 8

The random forest and naı̈ve Bayes classifiers showed the highest metrics on the validation set, and random forest was selected for further optimization.

TP: true positive; FP: false positive; FN: false negative; TN: true negative

Table 3. Our classifier performed optimally across all metrics using 20 gene-set (GO-BP term) features

Classifier #Features Classification performance in the validation set

Accur Sens. Spec. Prec. AUC TP FP FN TN

Random Forest 10 47.8 0 100 NA 68.2 0 0 12 11

Random Forest 20 73.9 75.0 72.7 75.0 71.2 9 3 3 8

Random Forest 30 69.5 58.3 81.8 77.8 65.5 7 2 5 9

TP: true positive; FP: false positive; FN: false negative; TN: true negative
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(N-of-1-pathways: 74% accuracy, 71% AUC, 2-sided P¼0.039;

Table 2 and Figure 3A) significantly outperformed a cohort-derived

classifier trained on transcript-level variation between the sets of

asymptomatic vs symptomatic patients at 1 static point (52% accur-

acy, 41% AUC; Results section). This increase in predictive power

was achieved through 4 major mechanisms: (1) control of con-

founded environmental variables within each subject that impact

global transcriptional activity (eg, preexisting habits, medications,

and additional chronic diseases); (2) control of preexisting baseline

differences in gene or pathway expression across patients that may

introduce bias or lead to spurious conclusions; (3) reduced statistical

dimension through aggregation of responsive transcripts into

enriched gene sets with common biological properties prior to cross-

group comparisons; and (4) a focus on analysis of clinically relevant

elicited responses within each patient rather than total variability.

Within a given clinical class, between-patient heterogeneity in spe-

cific transcript expression resulting from unique genetic architecture

can also be subsumed into pathway scores if the summative effect on

a functional pathway remains in common.

Unsurprisingly, these results suggest that dynamic changes in the

personal transcriptome are more predictive than static measure-

ments. This agrees with what is observed in clinical practice, where

provocation tests are routinely shown as more correlated to the

patient’s response to therapy than unprovoked phenotypes (eg,

bronchial histamine challenge test with spirometry is superior to

peak flow measurements). The stimulation assay we outline here

corresponds to such a provocation assay, revealing a dynamic

phenotype at the transcriptome level.

Along with the improved classifier performance, the N-of-1-

pathways strategy provides an additional benefit over conventional

classifiers, as pathways in each patient are individually scored. This

permits researchers or clinicians to meaningfully examine each

patient’s individual responsivity independently (Figure 3C). As our

knowledge of the mechanistic involvement of each pathway grows,

these star plots could be used in aggregate not only to stratify

patients according to their classified risk, but also to suggest a more

effective precision medicine approach to disease management for

any given individual.

It is of great interest that several of the GO biological processes

identified were highly relevant for the viral challenge under study.

Acquired and innate immunity, for example, are critical elements in

acute responses to viruses. Moreover, type I interferons (ie, a and b
interferons) play a major role in activating antiviral responses.40 Ac-

tivation of innate immunity in particular is also a hallmark of hyper-

sensitivity in asthmatic patients,41,42 so it is both expected and

reassuring that our classifier included multiple GO terms related to

this process. However, that same hallmark of hypersensitivity in

asthma reduced the discriminatory power of innate immunity proc-

esses in classifying already asthmatic patients as exacerbating vs

non-exacerbating (Figure 3). Not many classifiers of asthmatic ex-

acerbation have been published, but when we compare the bio-

logical processes revealed by our classifier to one identified by

Bjornsdottir et al. (2011),43 we see both similarities and differences.

The classifier in their study used a larger dataset of 118 adult asth-

matic patients, with RNA samples obtained during asthma-

quiescent vs mid-exacerbation in the same cohort of patients, using

the natural course of each patient’s disease progression rather than a

provoked stimulus response assay. Their asthmatic exacerbation

classifier, which was run through Ingenuity Pathway Analysis,

revealed entirely immune-mediated responses, including Toll-like re-

ceptor signaling, T cell receptor signaling, B cell receptor signaling,

interferon signaling, interferon responsive factors, and IL15 signal-

ing. While we could not do a direct comparison of GO pathways or

underlying transcript participation in classification due to the pro-

prietary nature of Ingenuity Pathway Analysis, these appear to show

substantial convergence with the GO pathways of acquired and in-

nate immunity that we observed (Supplementary Table S5). Not-

ably, however, while innate immunity–associated genes were

significantly represented in their study, our study found that activa-

tion of the innate immune response was a characteristic of all asth-

matic patients exposed to HRV, with little predictive discriminatory

power to classify exacerbation from non-exacerbation. In addition,

the classifier built by Bjornsdottir did not substantially prioritize

transcripts or pathways associated with morphogenesis, chromatin

organization, or generalized response to stimulus, which were highly

discriminatory in our analysis. We found that these may provide

insights into additional exacerbation pathology–associated processes

that occur in the subset of predisposed patients who are exposed to

triggering stimuli.

Another notable result of this study was that it underscores the

specific clinical relevance of HRV infection to asthmatic exacerba-

tion, as had been repeatedly described in clinical and epidemio-

logical studies.12–17 While observational associations could be

biased by the ubiquity of HRV (the common cold) relative to other

respiratory infections, we found that the transcriptional response of

PBMCs to HRV exposure was predictive of the outcome in our

asthma cohort, while a classifier based on influenza A–provoked

responses was not. This also highlights the importance of choosing a

highly clinically relevant stimulus during design of the bioassay com-

ponent in order to optimize the chance of success.

Though the training set data were the same, the classifier devel-

oped here using single-subject metrics of responsive pathways (N-of-

1-pathways scores) diverges substantially from the classifier

produced by Zaas et al.20 Their classifier was developed by first

selecting a common gene signature indicative of acute respiratory in-

fection across 3 distinct viral challenges (HRV, respiratory syncytial

virus, and influenza A). This gene signature was then used to differ-

entiate influenza infection from bacterial infection or asymptomatic

status in an independent clinical dataset. On the other hand, our

classifier was designed to predict a different phenotype – exacer-

bated asthma in patients using responsiveness of their PBMCs to

HRV in an in vitro assay (virogram). It remains to be seen if the

common gene signature of viral infection derived by Zaas et al.20 is

predictive of asthmatic exacerbation, and this could be determined

in future studies.

Although previous studies attempting to create asthmatic exacer-

bation risk classifiers used differential expression of pathway gene

sets to classify clinical phenotypes,44,45 these did not use a matched

sample design (eg, stimulated vs unstimulated) and thus were not able

to assess individual dynamic changes as features and/or true pathway-

level signals with underlying transcript heterogeneity. We showed

that developing an unbiased G�E classifier based on the genomic

profiles of healthy individuals experiencing rhinovirus stimulation

enabled risk assessment of exacerbation in children with asthma.

Classification of asthma exacerbation was successfully demonstrated

using the dynamic change of expression in pathways of single sub-

jects, whereas conventional methods of gene-level profiling failed.

LIMITATIONS AND FUTURE STUDIES

One limitation of the current study is the small cohort size in both

our training (healthy) and validation (asthmatic) sets. Designing
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more accurate classifiers on a larger and/or asthmatic cohort may

improve patient stratification. Accurate classifiers using N-of-1-

pathways analytics are powered to identify dynamic changes in gene

expression patterns arising from 2 samples of a single subject and

offer additional insights on individual responsive pathways.7,9,10

These improved genomic signals at the subject level can be compiled

for a cross-patient statistical analysis to uncover common pathways

and genes as well as allow patient risk stratification. In contrast,

many conventional transcriptome analyses operating on single and

static measurement profiles utilize statistics that generally require

larger cohorts to combat cross-patient variability and random noise

in the raw expression data, unrelated to the measure of interest.

As this study was conducted as a proof-of-concept, the number

of subjects was limited and did not allow for designing a classifier

from groups of children with asthma. The current accuracy of the

classifier is sufficient for a proof-of-concept, but was generated from

symptomatic vs asymptomatic non-asthmatic subjects and then

applied a classifier to assess propensity for exacerbations in children

with asthma. Further, the PBMC samples were obtained after the

asthma exacerbations occurred, so it is not possible in this study to

determine whether these responsive pathways lead to or result from

recurrent asthma exacerbations. In future prospective studies, we

plan to generate both training and validation cohorts from groups of

children with asthma, which should increase the accuracy of the

classifier and its clinical utility. We are also improving the N-of-1-

pathways framework to identify better responsive transcripts in

each patient, which may provide greater insight into the molecular

mechanism(s) underpinning each pathway of the classifier. While

expression-level classifiers implicitly harbor co-transcribed and co-

regulated transcripts, the GO terms of our G�E classifier comprise

more obvious overlap of mRNAs (Table 4). We will investigate

methods to identify more independent classifier features in future

studies. Per standard operating procedures, PBMC RNA is extracted

from PBMCs as 1 homogenized sample without counts of cell-type

subpopulations, thus the RNA expression changes between 2 sam-

ples confound changes in expressed transcripts with changes to cel-

lular composition of the sample. In future studies, deconvoluting the

signal according to cell type could be addressed for cell type–specific

transcription, using expression change and proportion of cell type

change between paired samples.

CONCLUSION

Given the importance of monitoring the dynamic gene expression

driven by genome-by-environment interplay that influences the dir-

ection of biological processes and the course of a disease, improve-

ments are needed in the design of advanced experimental and

analytics assays intended for individual patients’ point of care and

disease assessment in order to tailor treatment. Our proposed frame-

work addresses this challenge by differing from traditional classifiers

that employ mRNA expression as the features. In particular, we

introduce the use of the N-of-1-pathways framework to first identify

the responsive pathways induced gene-by-environment interaction

via a paired stimulated vs unstimulated assay, where the stimulation

is relevant to the clinical phenotype of interest. These responsive

pathways are then utilized as features in classification algorithms to

predict the phenotype of interest. In the context of asthma, at least

48% of pediatric admissions for exacerbated asthma are due to

HRV, and, as such, our in vitro HRV-stimulated assay was designed

ab initio for a single-subject analytic framework and is seen to iden-

tify children prone to asthma exacerbations. The type of stimulated

PBMC assay proposed could scale to predict responses to therapy of

a large number of clinical conditions that are immune-mediated, or

for which PBMC is a justified target tissue. For example, chemical

or biological ligands rather than intact viruses could be used to

Table 4. Gene ontology (GO) gene sets of the G�E classifier obtained in the training set

Class of GO-BP gene sets GO ID GO term

I. Acquired Immunity GO:0002768* immune response–regulating cell surface receptor

,!GO:0002429 immune response–activating cell surface receptor

,!GO:0050851 antigen receptor–mediated signaling pathway

,!GO:0050852 T cell receptor signaling pathway

II. Innate Immune Response GO:0045087* innate immune response

,!GO:0060337 type I interferon-mediated signaling pathway

(p),!GO:0034340 response to type I interferon

(i),!GO:0071357 cellular response to type I interferon

III. Morphogenesis GO:0050807 regulation of synapse organization

GO:0001658 branching involved in ureteric bud morphogenesis

GO:0060688 regulation of morphogenesis of a branching structure

GO:2000027 regulation of organ morphogenesis

IV. Response to Stimulus GO:0043279 response to alkaloid

GO:0050795 regulation of behavior

GO:0009581 detection of external stimulus

V. Chromatin Organization GO:0006325* chromatin organization

,!GO:0016568 chromatin modification

,!GO:0016569 covalent chromatin modification

,!GO:0016570 histone modification

GO:0006913 nucleocytoplasmic transport

Twenty GO biological processes (GO-BPs) responsive to HRV stimulation were selected by the best classifier after evaluation in the validation set (Materials

and Methods section). GO-BPs were organized into 5 categories by an unbiased information theoretic similarity score (Materials and Methods section), and these

classes were manually assigned representative names. Of note, some GO-BPs were ordered according to their GO hierarchy when available, with the parent term

annotated with an asterisk and located above the child term. For example, GO:0002768 is the parent of GO:0002429. Legend: ,!¼ “is a” (parent-child relation-

ship); (p),!¼ “part of” (parent-child relationship); (i),!inferred as “is a” (parent-child relationship).
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stimulate specific pathways to study drug-targeting receptors. N-of-

1-pathways analytics provides an informative, quantitative, and vis-

ual characterization of subject-specific response to stimulation,

influenced by the interaction of genomic variability and stimulus ex-

posure, and is, in principle, applicable not only to the transcriptome

but also to other omics measures (eg, proteome). When applied to

easily accessible tissue in a minimally invasive way, these types of

in vitro stimulation assays and associated analytics could potentially

supplant more invasive in vivo prognosis procedures that also assay

responses to the environment in the emerging field of precision

medicine.
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